Two 'Super-Earths' discovered by Milton Keynes and Hertfordshire scientists

Artist’s impression of the multiplanetary system of newly discovered super-Earths orbiting nearby red dwarf Gliese 887 Credit: Mark Garlick

Two "super-Earths" have been discovered orbiting one of the brightest red dwarf stars in the sky.

Scientists from Hertfordshire and Milton Keynes, say that GJ 887 is about half as big as the Sun, and just 11 light years away.

Red dwarfs like GJ 887 have low surface temperatures, which makes them less luminous and often hard to detect.

But stars like these are cooler than the Sun, which means the habitable zone the orbital band where temperatures are mild enough to allow liquid surface water - is much closer to GJ 887 in comparison with the Earth's distance from the Sun.

The new planets, called GJ 887b and GJ 887c, were found using a high-precision, planet-finding instrument on the European Southern Observatory's 3.6-metre telescope at La Silla in Chile.

Both are believed to be super-Earths - planets which have a mass higher than Earth but substantially below those of local ice giants Uranus and Neptune.

The discovery was made by an international team of astronomers, including researchers from the University of Hertfordshire, The Open University and Queen Mary University of London.

The scientists used a technique known as Doppler wobble, which enabled them to find the planets by measuring their gravitational interaction with GJ 887.

As a planet orbits, it causes its parent star to wobble by a tiny degree. Astronomers can see the signature of this effect in the light emitted by the star.

The researchers believe both GJ 887b and GJ 887c lie close to the inner edge of habitable zone and may be too hot to maintain liquid water on their surfaces.

They estimate the surface temperature of GJ 887c, which takes 21.8 days to circle its host star, to be around 70C.

GJ 887b, meanwhile, is much closer to the star, with an orbital period of 9.3 days.

But the researchers say GJ 887 is less active than other red dwarfs, so the newly discovered worlds may be spared from strong stellar winds - outflowing material from the star which can erode a planet's atmosphere.

Hence, the team are keen to learn more about this super-Earth system.

Dr John Barnes, an astrophysicist at the Open University and one of the authors on the study published in the journal Science, said:

"Close orbiting planets like these have a high chance of being tidally locked to their host star.

Dr John Barnes, Open University, Milton Keynes

The researchers also detected an unconfirmed signal, raising hopes of a third planet with a more "temperate" orbit.

But Dr Barnes is cautious about this finding, saying: "If the signal is a planet, it would orbit every 51 days. However, we also see signals with a similar period that we know must be coming from the star.

"This is why we are currently unable to say that the third signal is actually a planet. If subsequent observations do confirm it as a planet, it would lie just within the habitable zone."